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1. Introduction

Asymptotically AdS space-times have been investigated thoroughly in recent years due to

the AdS/CFT correspondence [1 – 3]. It relates the gravity in asymptotic AdS space-times

to dual conformal field theories (CFTs) living on the boundary of the AdS space-times.

In this correspondence, the boundary fields which set the boundary conditions of bulk

fields are identified with CFT sources which couple to gauge invariant operators. For

example, the boundary metric plays the role of the metric of the space-time on which

the dual field theory is defined; on the other hand, it is a source of the energy momentum

tensor of boundary CFT. This requires the existence of space-times associated with general

Dirichlet boundary conditions for the metric. Such general boundary conditions include

the so-called asymptotically locally anti-de Sitter (AlAdS) space-times, which require only
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asymptotically locally AdS, not exact AdS. Asymptotically exact AdS case has been studied

in the literatures, for example see [4, 5], and hereafter we call them AAdS space-times for

simplicity. Note that for the n-dimensional AAdS space-times, the boundary has the

topology R×Sn−2, while for the AlAdS space-times, the topology of their boundary needs

not to be R×Sn−2. Due to the difference between the boundary topologies, some methods,

which are very powerful to calculate conserved charges for AAdS space-times, do not work

for AlAdS space-times.

Therefore, it is interesting to study the conserved charges in AlAdS space-times in

its own right. In the literatures, there are different methods to obtain conserved charges

for AAdS space-times, see for example, references [4 – 11]. The comparison among these

notions of conserved charges in AAdS space-times has been made by Hollands et al. in a

recent paper [12]. For AAdS space-times, the method of Ashtekar et al and the method

of “boundary counterterm” are independent of the reference background. Using these two

methods, one therefore needs not consider this reference background problem and can

get the conserved charges of AAdS space-times by straightforward calculations. However,

for the AlAdS space-times, those methods which rigorously depend upon the boundary

conditions of AAdS space-times would invalidate, because the boundary conditions of Al-

AdS space-times may be very different from those of AAdS space-times. For example,

the method of Ashtekar et al. [5, 10] does not work for AlAdS space-times because the

boundary topology R × Sn−2 is required in this method. Moreover, the definition of n-

dimensional AAdS space-times requires a condition that the product of the conformal factor

to the power of (3−n) and the Weyl tensor of the unphysical space-time admits a smooth

limit on the conformal boundary [10]. This condition can not be fulfilled for general AlAdS

space-times. For example. one can easily check that the method of Ashtekar et al. does not

work for the asymptotically AdS space-times with Nut charges, which are typical AlAdS

space-times and will be discussed in the present paper.

Several methods have been proposed by some authors to define the conserved charges

in AlAdS space-times, such as the “holographic charges” studied in [13], the method given

in [14, 15], and the superpotential method [16]. In this paper, based on the recent work

of Hollands et al [12], we develop a method of calculating conserved charges in even di-

mensional AlAdS space-times by using the covariant phase space definition of Wald and

Zoupas [17]. This method generalizes the formula of Ashtekar et al. such that we can

calculate conserved charges in even dimensional AlAdS space-times. This method is back-

ground dependent, and one has to specify a reference background before calculating the

conserved charges for these AlAdS space-times.

This paper is organized as follows. In the next section 2, we briefly review the definition

of conserved charges given by Wald and Zoupas [17], and give explicit forms of some

related quantities in AlAdS space-times. In section 3, we derive the formula of calculating

conserved charges in even dimensional AlAdS space-times by using the analysis of Hollands

et al. [12]. Our formula generalizes the one given by Ashtekar et al.. In section 4, using this

new formula, we calculate the masses of Taub-Bolt-AdS solutions by treating the Taub-Nut-

AdS space-times as the reference background. In section 5, four dimensional Kerr-Taub-

Nut-AdS solution is discussed, and the mass and angular momentum associated to it are
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calculated. Section 6 is devoted to calculating the conserved charges for higher dimensional

Kerr-AdS solutions with Nut charges. In section 7 we give the mass for (un)wrapped black

brane solutions. We end in section 8 with conclusion and discussion.

2. Wald’s definition and the boundary of AlAdS space-times

In differential covariant theories of gravity, Wald et al.[17] developed a general prescription

to define “conserved charges” at asymptotic boundaries for any space-times. In this paper,

we will use this method to define the conserved charges dual to some asymptotic symmetry

generators of AlAdS space-times. For simplicity, we consider no matter case (i.e., gab are

the only dynamical fields), therefore the corresponding differential covariant Lagrangian of

n-dimensional AlAdS space-times (M,gab) is:

L =
1

16πG
[R − 2Λ] ε, (2.1)

where we have put the Lagrangian in the form of differential form and ε is the volume

element. The variation of the Lagrange density L can be written as

δL = Eabδgab + dΘ, (2.2)

where Θ is an (n−1)-form, which is called symplectic potential form, and it is a local linear

function of field variation. Eab corresponds to the equations of motion. Their explicit forms

are

Θa1···an−1
(gab, δgab) =

1

16πG
εa1···an−1av

a(gab, δgab), (2.3)

Eab =
1

16πG

[
Rab − 1

2
Rgab + Λgab

]
ε, (2.4)

where

v
a = gab∇cδgcb − gbc∇aδgbc. (2.5)

The symplectic current (n− 1)−form ω is defined by taking an antisymmetrized variation

of Θ:

ωa1···an−1
(gab, δ1gab, δ2gab) =

1

16πG
εa1···an−1aw

a(gab, δ1gab, δ2gab), (2.6)

where w is a 1-form given by

w
a(gab, δ1gab, δ2gab) = P abcdef (δ1gbc∇dδ2gef − δ2gbc∇dδ1gef ), (2.7)

where

P abcdef = gaegfbgcd − 1

2
gadgbegfc − 1

2
gabgcdgef − 1

2
gbcgaegfd +

1

2
gbcgadgef . (2.8)

The integral of the symplectic current form over an (n − 1)−dimensional submanifold Σ

on M̃ gives the presymplectic form,

ΩΣ(g, δ1g, δ2g) =

∫

Σ
ω(g, δ1g, δ2g), (2.9)
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where M̃ = M ∪ B is the conformal completion of M with the boundary manifold B.

The presymplectic structure ΩΣ does not depend on the choice of Σ if δ1g and δ2g satisfy

linearized field equations and g has suitable asymptotic condition [17 – 20]. Here we have

assumed that “kinetically” allowed field space F has been defined such that ω can be

extended continuously to B for all δ1g and δ2g tangent to the solution subspace F and Σ

has an unambiguous boundary ∂Σ in B.

The “conserved charges” Hξ : F → R associated with a vector field ξa representing an

asymptotic symmetry defined by using presymplectic form in [17] satisfies

δHξ = ΩΣ(g; δg,Lξg), (2.10)

for an arbitrary δg which is tangent to field space F at point g of the solution subspace F .

One can put it in the form [20]

δHξ =

∫

Σ
ξaδCa +

∫

∂Σ
[δQ − ξ ·Θ], (2.11)

where

Qa1...an−2
= − 1

16πG
(∇bξc)εbca1...an−2

. (2.12)

If the equations of motion hold, then Ca = 0, i.e., Ca correspond to “constraints” of the

theory. Equation (2.12) defines the Noether charge (n− 2)-form, Q. If δg is tangent to F ,

or satisfies linearized field equations, then (2.11) becomes

δHξ =

∫

∂Σ
[δQ − ξ ·Θ]. (2.13)

It was shown in [17] that if ω = 0 on B (case I), or ξ is everywhere tangent to the cross

section ∂Σ in B (case II), then “conserved charges” Hξ exist, and in case I, they are really

conserved.

It should be noted, in one connected component of F , that the conserved charge (2.10)

is uniquely defined up to a constant. Usually, we can choose a natural “reference solution”

g0 ∈ F so that this constant, Hξ[g0], vanishes. Integrating the variation parameter from

0 to λ̄ (which corresponds to the solution we want to define the conserved charges.), the

conserved charge Hξ[gλ̄] is given by

Hξ[gλ̄] =

∫ λ̄

0
dλ

∫

∂Σ
[δQλ − ξ ·Θλ]. (2.14)

Just as pointed out by the authors of the paper [17], this definition does not depend on

the choice of the paths connecting g0 and gλ̄. So the conserved charges are well defined.

In the next section, we will use the definition and give the conserved charges in AlAdS

space-times.

In the remainder of this section, we will give some preliminary analysis about the

neighborhood of boundary of the AlAdS space-times. The n-dimensional AlAdS space-

times are solutions of Einstein’s equations with a negative cosmological constant, whose

Riemann tensor asymptotically approaches to that of exact AdS space-time. A simple class
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of AlAdS space-times is AAdS space-times which have boundary topology R × Sn−2. For

general AlAdS space-times their boundary topology may be different from the topology

R × Sn−2.

Let (M,gλ), λ ∈ R, be a smooth one-parameter family of n-dimensional AlAdS space-

times which pass through the point gλ̄ (which corresponds to the AlAdS space-time under

discussion) in the solution subspace Γ. We assume that they have the same conformal

infinity. That is to say (i) one can attach a boundary B to M such that M̃ = M ∪ B
is a manifold with boundary. For example B ∼= R × =n−2 and =n−2 denotes an (n − 2)-

dimensional manifold whose topology may not be that of a round sphere Sn−2; (ii) on M̃ ,

there is a family of smooth metrics ḡλ and a smooth function Ω (does not depend λ) such

that gλ = Ω−2ḡλ, and such that Ω = 0,

dΩ 6= 0, (2.15)

at points of B. The metrics on B induced by ḡλ are of the same form for all λ, and can be

denoted as h. For example, for the Schwarzschild-AdS black holes with mass parameter as

a variation parameter, their metrics can be expressed as

ds2
λ = −

(
k − 2λ

rn−3
+

r2

`2

)
dt2 +

dr2

k − 2λ
rn−3 + r2

`2

+ r2dσ2
n−2, (2.16)

where dσ2
n−2 denotes for the metric of (n − 2)-dimensional Einstein space with constant

curvature (n − 2)(n − 3)k . In the case of k = 1, one can choose a conformal factor and

boundary as Ω = `
r , B = R × Sn−2, and realize the completion described above. The

boundary metric h is an Einstein static unverse with radius `

ds̄2
λ|B = Ω2ds2

λ|B = −dt2 + `2dσ2
n−2. (2.17)

For h and each λ, in the neighborhood of B, there exists a unique conformal factor ρλ or

coordinates xλ = (ρλ, y) in which the metric takes the form [21, 22]

ρ2
λgλ = g̃λ = dρ2

λ + h̃ρλ

h̃ρλ
= h̃0 + ρλ(h̃λ)1 + · · · + ρn−1

λ (h̃λ)n−1 + (αλ)n−1ρ
n−1
λ ln ρ2

λ + · · · (2.18)

where h̃ρλ
is chosen such that h̃ρλ=0 is equal to the metric h̃0 = h on B, and in the

neighborhood of the boundary B,

(h̃ρλ
)ab

(λ)∇̃bρλ = 0, (g̃λ)ab(λ)∇̃aρλ
(λ)∇̃bρλ = 1, (2.19)

where (λ)∇̃a is the covariant derivative associated to g̃λ. (h̃ρλ
)ab is the induced metric on

the surfaces Bρλ
, the time-like surfaces of constant ρλ with coordinate y. In fact, ρλ is just

the distance from the point to the boundary. Here, for simplicity, we have set the AdS

radius ` = 1.

Straightforward computation shows that the Riemann tensor of (2.18) is of the form

of exact AdS up to a correction of order ρ−3
λ [21, 23]. The asymptotic analysis reveals that

all coefficients shown in (2.18) except the traceless and divergenceless part of (h̃λ)n−1 are
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locally determined in terms of boundary data. So, (h̃λ)j , for j ≤ n − 2 are independent of

λ. The logarithmic term appears only when n is odd, if one considers the pure gravity case.

This term is important in the context of AdS/CFT in odd dimensional AlAdS space-times,

which reflects the anomaly in the even-dimensional dual conformal field theories [24].

Assume that the coordinates of point p ∈ ε × B (The neighborhood of B has a direct

product form, we denote it by ε×B, where ε is a small quantity.) are xλ(p) = (ρλ(p), y(p)).

Consider differomorphism φσ of M̃ which has a restriction on the neighborhood of B

φσ : ε × B → ε × B, p 7→ φσ(p) (2.20)

with φσ(p) satisfying

xλ(φσ(p)) = (ρλ+σ(p), y(p)), ∀ λ ∈ R (2.21)

where ε is small enough such that these coordinates are well defined in ε×B for all λ. Then

φσ forms a one parameter transformation on ε × B. If the vector field which generates φσ

is denoted by ζ, then we have

Lζ g̃λ(p) = lim
σ→0

1

σ
[(φ∗

σ g̃λ) − g̃λ] (p)

= lim
σ→0

1

σ

[
φ∗

σ(dρ2
λ + h̃ρλ

) − (dρ2
λ + h̃ρλ

)
]
(p)

= lim
σ→0

1

σ

[(
d(ρλ ◦ φσ)2 + φ∗

σh̃ρλ

)
−

(
dρ2

λ + h̃ρλ

)]
(p)

= lim
σ→0

1

σ

[(
dρ2

λ+σ + h̃ρλ+σ

)
−

(
dρ2

λ + h̃ρλ

)]
(p)

=

[
2d

(
dρλ

dλ

)
dρλ +

∂h̃ρλ

∂ρλ

dρλ

dλ

]
(p)

Thus, we have

Lζ g̃λ = 2d

(
dρλ

dλ

)
dρλ +

∂h̃ρλ

∂ρλ

dρλ

dλ
. (2.22)

It should be noted that the restriction of φσ on B is an identity. So, the vector field ζ must

vanish on B if it generates φσ in ε×B, i.e., it corresponds to a gauge freedom according to

the asymptotic symmetry transformations. Consider the variation of g̃λ at λ̄

d

dλ
g̃λ|λ̄ =

d

dλ
(dρ2

λ + h̃ρλ
)|λ̄. (2.23)

With the help of (2.18) and (2.22), in the even dimensional case, one has

d

dλ
g̃λ|λ̄ =

[
2d

(
dρλ

dλ

)
dρλ +

∂h̃ρλ

∂ρλ

dρλ

dλ

]

λ̄

+ ρn−1
λ

d

dλ
(h̃λ)n−1|λ̄ + O(ρn−1

λ̄
)

= Lζ g̃λ̄ + ρn−1
λ̄

d

dλ
(h̃λ)n−1|λ̄ + O(ρn−1

λ̄
). (2.24)

Thus, if the change of ρλ with λ gives a contribution to the variation of gλ̄, then this

contribution is just a Lie-derivative of gλ̄ about one vector field which vanishes on the

boundary B. This equation is very useful in our analysis below. The same derivation will

be done for giving the variation of the electric part of Weyl tensor in the next section.
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3. Conserved charges in even dimensional AlAdS space-times

To give the explicit form of conserved charges in AlAdS space-times, we need to analyze the

field equations. Our analysis here is similar to that of Hollands et al. [12]. The difference

is that we are treating even dimensional AlAdS space-times instead of the AAdS space-

times considered in [12]. Therefore the result is modified so that we can calculate the

conserved charges of more general solutions to which the method of Ashtekar et al [10] is

not applicable. The reader who wants to know more details of this procedure may refer to

the paper [12].

3.1 Analysis of Einstein equations

To analyze Einstein’s equations, we follow [12] and introduce the tensor field for each λ in

the AlAdS solution family gλ,ab described in the previous section

(S̃λ)ab =
2

n − 2
(R̃λ)ab −

1

(n − 1)(n − 2)
R̃λ(g̃λ)ab, (3.1)

In terms of this field and the coordinates of (2.18), in the neighborhood of B, Einstein’s

equations can be rewritten as

(S̃λ)ab = −2ρ−1
λ

(λ)∇̃a(ñλ)b. (3.2)

Treating ρλ as “time”, one can obtain the equations of “constraint” and “evolution” by

using standard ADM decomposition. The constraint equations are

− R̃λ − (K̃λ)ab(K̃λ)ab + K̃2
λ + 2(n − 2)ρ−1

λ K̃λ = 0 , (3.3)
(λ)D̃a(K̃λ)ab − (λ)D̃bK̃λ = 0 , (3.4)

where (λ)D̃a is the derivative operator associated with (h̃λ)ab, (K̃λ)ab = −(h̃λ)a
c(h̃λ)b

d (λ) ×
∇̃c(ñλ)d is the extrinsic curvature of the surfaces Bρλ

(with respect to the unphysical

metric). Here we have denoted (h̃ρλ
)ab by (h̃λ)ab for simplicity, and R̃λ is the intrinsic

Ricci scalar of Bρλ
. The evolution equations are

d

dρλ
(K̃λ)a

b = (R̃λ)a
b + K̃λ(K̃λ)a

b + ρ−1
λ (n − 2)(K̃λ)a

b + ρ−1
λ K̃λδa

b, (3.5)

d

dρλ
(h̃λ)ab = −2(h̃λ)bc(K̃λ)a

c. (3.6)

By assumption, B is a smooth boundary, which implies that the fields (h̃λ)ab and (K̃λ)ab

must be smooth in a neighborhood of B. Consequently, multiplying the first evolution

equation by ρλ and evaluating on B, one can immediately get

(K̃λ)ab|B = 0 =
d

dρλ
(h̃λ)ab|B. (3.7)
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To investigate more systematically the consequences implied by eq. (3.5) and (3.6), we

express them in terms of the traceless part (p̃λ)a
b of (K̃λ)a

b and use the familiar technique–

Fefferman-Graham expansion [25]:

(h̃λ)ab =
(
h̃ab

)
0
+ ρλ

(
(h̃λ)ab

)
1
+ · · · + ρn−1

λ

(
(h̃λ)ab

)
n−1

+ ρn
λ

(
(h̃λ)ab

)
n

+ · · · ,

(p̃λ)a
b =

(
(p̃λ)a

b
)

0
+ ρλ

(
(p̃λ)a

b
)

1
+ · · · + ρn−1

λ

(
(p̃λ)a

b
)

n−1
+ ρn

λ

(
(p̃λ)a

b
)

n
+ · · · . (3.8)

The logarithmic terms have not been included because we consider even dimensional cases

only, where each tensor
(
(h̃λ)ab

)
j
,
(
(p̃λ)a

b
)
j

are independent of ρλ in the sense that the

Lie-derivative along (ñλ)a vanishes. Substituting the above expansion into (3.5) and (3.6),

one can obtain the following recursion relations

(n − 2 − j)
(
(p̃λ)a

b
)

j
=

(
(R̃λ)a

b
)

j−1
− 1

n − 1

(
R̃λ

)
j−1

δa
b

−
j−1∑

m=0

(
K̃λ

)
m

(
(p̃λ)a

b
)

j−1−m
, (3.9)

(2n − 3 − j)
(
K̃λ

)
j

=
(
R̃λ

)
j−1

−
j−1∑

m=0

(
K̃λ

)
m

(
K̃λ

)
j−1−m

, (3.10)

and

j
(
(h̃λ)ab

)
j

= −2

j−1∑

m=0

[(
(h̃λ)bc

)
m

(
(p̃λ)a

b
)

j−1−m
+

1

n − 1

(
(h̃λ)ab

)
m

(
K̃λ

)
j−1−m

]
.

(3.11)

The “initial conditions” are, from eq. (3.7),

(
(p̃λ)a

b
)

0
=

(
K̃λ

)
0

= 0, (3.12)

and (h̃ab)0 = hab is the metric of the boundary B. The key point of these equations is

that
(
(h̃λ)ab

)
j

and
(
(K̃λ)a

b
)

l
are uniquely determined in terms of the initial conditions

for j < n − 1 and l < n − 2. Therefore they are independent of λ. Thus, we have

d

dλ
(h̃λ)ab|λ̄ =

(
∂(h̃λ)ab

∂ρλ

dρλ

dλ

)

λ̄

+ ρn−1
λ̄

d

dλ

(
(h̃λ)ab

)
n−1

|λ̄ + O(ρn
λ̄). (3.13)

As a result, any quantity that depends only on
(
(h̃λ)ab

)
j

and
(
(K̃λ)a

b
)

l
in range j < n−1

and l < n − 2, must be automatically independent of λ.

The analysis of the recursion relation (3.9) for j = n − 2 and constraint equation

tell us that [12], once the traceless, symmetric tensor
(
(p̃λ)a

b
)
n−2

with the divergence

(determined by the constraint equations) is given, all tensors
(
(p̃λ)a

b
)
j

and
(
(h̃λ)ab

)
j

are

uniquely determined for j ≥ n − 1 via the evolution and constraint equations. Thus, this

tensor carries the full information about the metric (g̃λ)ab which is not already supplied by
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the boundary conditions, i.e., the “non-kinematical” information. The tensor
(
(p̃λ)a

b
)
n−2

is related to the electric part of the unphysical Weyl tensor, as we will show shortly. From

the definition of the tensor field (S̃λ)ab, we have

(R̃λ)abcd = (C̃λ)abcd + (g̃λ)a[c(S̃λ)d]b − (g̃λ)b[c(S̃λ)d]a . (3.14)

Using Einstein’s equations, the definition of extrinsic curvature and the Gauss-Coddazi

relation, we have

(C̃λ)abcd(ñλ)b(ñλ)d = −(K̃λ)ab(K̃λ)bc + Lenλ
(K̃λ)ac − ρ−1

λ (K̃λ)ac . (3.15)

This equation can be expanded in powers of ρλ like the metric. We thereby obtain equations

for the expansion coefficients. At the order n − 3, one has the relation

1

n − 3

(
(C̃λ)acbd(ñλ)c(ñλ)d

)
n−3

=
(
(K̃λ)ab

)
n−2

− 1

n − 3

n−3∑

m=0

(
(K̃λ)ac

)
m

(
(K̃λ)b

c
)

n−3−m
.

(3.16)

However, the coefficients appearing in the sum are independent of λ, and they are deter-

mined by boundary data. Consequently, we can obtain the variation relation

d

dλ

[
1

n − 3

(
(C̃λ)acbd(ñλ)c(ñλ)d

)
n−3

]

λ̄

=
d

dλ

[(
(K̃λ)ab

)
n−2

]

λ̄

. (3.17)

It is easy to see, at order j < n−3, the coefficients of (C̃λ)abcd(ñλ)b(ñλ)d are independent of

λ because they are fixed by the boundary data as we mentioned above. Thus, the variation

of these coefficients are zero, i.e.,

d

dλ

[(
(C̃λ)acbd(ñλ)c(ñλ)d

)
j

]

λ̄

= 0. (3.18)

Combining (3.11) with (3.17), we get

d

dλ

[
1

n − 3

(
(C̃λ)acbd(ñλ)c(ñλ)d

)
n−3

]

λ̄

=
d

dλ

[
−n − 1

2

(
(h̃λ)ab

)
n−1

]

λ̄

. (3.19)

Substituting this result into (3.13), we immediately have the following equation

d

dλ
(h̃λ)ab|λ̄ =

[
∂(h̃λ)ab

∂ρλ

dρλ

dλ

]

λ̄

− 2

n − 1
ρn−1

λ̄

d

dλ

[
1

n − 3

(
(C̃λ)acbd(ñλ)c(ñλ)d

)
n−3

]

λ̄

+ O(ρn
λ̄).

(3.20)

The similar procedure to deduce eq. (2.24) can be used to (C̃λ)acbd(ñλ)c(ñλ)d, and once

again one gets that the variation of (C̃λ)acbd(ñλ)c(ñλ)d can be divided into two parts (In

fact, any quantity which can be expanded as (3.8) always has such a variation relation)

d

dλ

[
(C̃λ)acbd(ñλ)c(ñλ)d

]
λ̄

= Lζ

[
(C̃λ̄)abcd(ñλ̄)b(ñλ̄)d

]

+ρn−3
λ̄

d

dλ

[(
(C̃λ)abcd(ñλ)b(ñλ)d

)
n−3

]

λ̄

+ O(ρn−2
λ̄

). (3.21)
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Multiplying this equation by ρ3−n
λ̄

and considering Lζρλ̄ = dρλ

dλ |λ̄, we arrive at

d

dλ

[
ρ3−n

λ (C̃λ)acbd(ñλ)c(ñλ)d
]
λ̄

= Lζ

[
ρ3−n

λ̄
(C̃λ̄)acbd(ñλ̄)c(ñλ̄)d

]

+
d

dλ

[(
(C̃λ)acbd(ñλ)c(ñλ)d

)
n−3

]

λ̄

+ O(ρλ̄). (3.22)

Define the electric part of the unphysical Weyl tensor as

(Ẽλ)ab =
1

n − 3
ρ3−n

λ

(
(C̃λ)acbd(ñλ)c(ñλ)d

)
. (3.23)

It should be noted here, although (Ẽλ)ab may be divergent when ρλ approaches to zero, the

variation d
dλ (Ẽλ)ab is always finite if one fixes the conformal factor as a gauge condition,

which can be understood from the above discussion. In what follows, we will treat only

the difference or variation of this tensor under the gauge as we mentioned above. In that

case, the divergence will not appear. By using eq. (3.20) and eq. (3.22), we have

d

dλ
(h̃λ)ab|λ̄ =

[
∂(h̃λ)ab

∂ρλ

dρλ

dλ

]

λ̄

+
2

n − 1
ρn−1

λ̄
Lζ(Ẽλ̄)ab −

2

n − 1
ρn−1

λ̄

d

dλ
(Ẽλ)ab|λ + O(ρn

λ̄).

(3.24)

At this stage, we deduce an important result in this section

d

dλ
(g̃λ)ab|λ̄ = Lζ(g̃λ̄)ab +

2

n − 1
ρn−1

λ̄
Lζ(Ẽλ̄)ab −

2

n − 1
ρn−1

λ̄

d

dλ
(Ẽλ)ab|λ̄ + O(ρn

λ̄). (3.25)

Thus the variation of g̃λ can be splitted into two parts: the first part is given by the

dependence of ρλ on λ, and can be regarded as a result of trivial differomorphism which is

generated by the vector field ζ, and the second part is given by the “dynamical information”

of the system. Therefore we will mainly concentrate on the second part below.

3.2 Derivation of conserved charges

The parts related to the Lie-derivative in eq. (3.25) correspond to the gauge freedoms, they

can be gauge fixed away. We fix ρλ to be ρ = ρλ̄ such that ζ = 0, and consider the variation

of the form
d

dλ
(g̃λ)ab|λ̄ = − 2

n − 1
ρn−1 d

dλ
(Ẽλ)ab|λ̄ + O(ρn). (3.26)

Recalling that ρ has been regarded as a fixed function which does not depend on λ, after

integrating λ from 0 to λ̄, we have

(g̃λ̄)ab − (g̃0)ab = − 2

n − 1
ρn−1

[
(Ẽλ̄)ab − (Ẽ0)ab

]
+ O(ρn), (3.27)

where g̃0 has the same conformal infinity as g̃λ̄ and plays the role of the metric of the

reference background solution. Here we have already assumed that g̃0 and g̃λ̄ belong to the

same connected component of the solution subspace; therefore, there is a smooth path that

connects them. We emphasize that, although (Ẽλ)ab may be divergent when ρ approaches

to zero, the difference
[
(Ẽλ̄)ab − (Ẽ0)ab

]
is always finite once one fixes the conformal factor

to be ρ. In other words, the leading order of the variation of (Ẽλ)ab and
[
(Ẽλ̄)ab − (Ẽ0)ab

]

has the form ρ3−n.
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Following [12], we view g̃λ̄ with the expression (3.27) as a “gauge condition” on the

metric, i.e. as a particular representative in the equivalence class of metrics which is

diffeomorphic to gλ̄. The (on-shell) metric variations respecting this gauge choice (with ρλ

be fixed as ρ) therefore take the form

d

dλ
(gλ)ab|λ̄ = (γλ̄)ab + Lη(gλ̄)ab, (3.28)

where the first piece (γλ̄)ab is a metric variation of the form

(γλ̄)ab = − 2

n − 1
ρn−1 d

dλ
(Ẽλ)ab|λ̄ + O(ρn), (3.29)

and the second piece is an infinitesimal diffeomorphism generated by an arbitrary vector

field η respecting the gauge choice, i.e., a diffeo satisfying Lηg0 ∼ O(ρn), where g0 is the

metric of reference space-time. Thus,

Lη(gλ̄)ab = − 2

n − 1
ρn−1Lη

[
(Ẽλ̄)ab − (Ẽ0)ab

]
+ O(ρn). (3.30)

Inserting these expressions into the definition of the symplectic current form ω(g, δ1g, δ2g),

we see that ω|B = 0. Hence, the conserved charges Hξ exist and are indeed conserved.

The variation of Noether charge (n − 2)-form is [12]

d

dλ
(Qλ)a1...an−2

|λ̄ =
1

8πG
(ε̃λ̄)a1...an−2bc(ñλ̄)b

d

dλ
(Ẽλ)cdξ

d|λ̄ + O(ρ) . (3.31)

Using the relation
(n)

ε̃λ = ñλ ∧ (n−1)
ε̃ = ñλ ∧ ũ ∧ (n−2)

ε̃, (3.32)

among the n-dimensional volume form, the induced (n − 1)-dimensional volume form of

the boundary B and the (n − 2)-dimensional volume form of the cross section ∂Σ, we can

rewrite eq. (3.31) as

d

dλ
(Qλ)a1...an−2

|λ̄ =
−1

8πG

d

dλ

[
(n−2)

ε̃a1...an−2
(Ẽλ)cdũcξ

d
]
λ̄

, on B. (3.33)

A similar calculation can be done and gives Θλ̄|B = 0. Thus, we have

d

dλ
Hξ[gλ]λ̄ =

∫

∂Σ

d

dλ
Qλ|λ̄ =

−1

8πG

[
d

dλ

∫

∂Σ
(Ẽλ)abũ

bξa dS̃

]

λ̄

. (3.34)

Integrating this equation over λ from λ = 0 to λ̄, yields

Hξ[gλ̄] − Hξ[g0] =
−1

8πG

∫

∂Σ

[
(Ẽλ̄)ab − (Ẽ0)ab

]
ũbξa dS̃. (3.35)

Choosing Hξ[g0] = 0 for all asymptotic symmetric representatives ξa, we get the result

Hξ[gλ̄] =
−1

8πG

∫

∂Σ

[
(Ẽλ̄)ab − (Ẽ0)ab

]
ũbξa dS̃, (3.36)

– 11 –



J
H
E
P
0
3
(
2
0
0
6
)
0
8
3

which can also be expressed by Weyl tensor

Hξ[gλ̄] =
−1

8πG(n − 3)

∫

∂Σ
lim
→B

ρ3−n
[
(C̃λ̄)acbd(ñλ̄)c(ñλ̄)d − (C̃0)acbd(ñ0)

c(ñ0)
d
]
ũbξa dS̃.

(3.37)

This is nothing, but the one we obtained in this paper for the expression of conserved

charges for AlAdS space-times, This expression is conformal invariant, so in fact we can

choose a more simple conformal factor instead of ρ (for example, Ω = 1/r in section 2)

to calculate the conserved charges. In AAdS space-times, the reference space-time is fixed

to be an exact AdS space-time which is conformal flat, and in this case the above for-

mula (3.37) reduces to the definition of Ashtekar et al [10]. For a general AlAdS space-

time, however, one has no prior background which can be chosen as an appropriate reference

background solution.

Although we have discussed only the even dimensional cases, it is easy to see that the

above procedure can be extended to the more general AlAdS cases where the Fefferman-

Graham expansion like (3.8) without log terms can be implemented. For example, one can

find that in the static AlAdS space-time setting with Ricci flat boundary, for both even and

odd dimensional cases, no log terms arise in the expansion [26]. Thus, the same conserved

charges for those space-times can be defined as eq. (3.37). As an example, in section 7 we

will calculate conserved charges for (un)warped black brane space-times, which belong to

such a kind of space-times.

4. Taub-nut-AdS and taub-bolt-AdS space-times

Taub-Nut-AdS and Taub-Bolt-AdS solutions are AlAdS solutions. For example, in the Eu-

clidean sector, their boundaries are U(1) bundles over S2 × · · · × S2
︸ ︷︷ ︸

k

for 2k +2 dimension1,

their metrics can be expressed as [27]

ds2 = F (r)(dτ + 2n cos θidφi)
2 +

dr2

F (r)
+ (r2 − n2)

i=k∑

i=1

(dθ2
i + sin2 θidφ2

i ), (4.1)

where i is summed from 1 to k and F (r) is given by

F (r) =
r

(r2 − n2)k

∫ r [
(s2 − n2)k

s2
+

2k + 1

`2

(s2 − n2)k+1

s2

]
ds − 2Mr

(r2 − n2)k
. (4.2)

One can find F (r) ∼ r2

`2
when r approaches to infinity. If we choose the conformal factor

as Ω = `
r , the boundary metrics have the form

ds2|B = Ω2ds2|B ∼ (dτ + 2n cos θidφi)
2 + `2

(
dθi

2 + sin2 θidφi
2
)
. (4.3)

It is easy to find that these boundaries are trivial bundles (i.e., direct product manifolds

S1 × S2 × · · · × S2 ) when the Nut charges vanish. Therefore non-vanishing Nut charges

give rise to the non-triviality of the bundles.

1Where S
2
× · · · × S

2 is called base space. It may be other Einstein-Kähler manifold, for example

T
2
× · · · × T

2, S
2
× · · · × S

2
× T

2
× · · · × T

2 and CP (k). We only consider the sphere cases in this paper.
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Before calculating their conserved charges, the following points are worthwhile to stress:

(i) Note that the Nut charges n appear in the boundary metrics, we conclude that solutions

with different nut charges have different boundary metrics. Thus we can not view a solution

with Nut charge n1 as a reference solution for calculating conserved charges of another

solution with different Nut charge n2. This is very different from the AAdS case where the

boundary is fixed to be Einstein static space-time. (ii) Since our formula is background

dependent, there is some freedom to choose the reference solution. Hawking et al. [28] and

Chamblin et al. [29] have argued that one can use 4-dimensional Taub-Nut-AdS solution

as the reference solution, when considering Taub-Bolt-AdS black hole solutions. They

have calculated the corresponding thermodynamic quantities of 4-dimensional Taub-Bolt-

AdS solution by using “background subtraction” method. The resultant thermodynamic

quantities obey the first law of black hole thermodynamics. Using “Noether charge” method

Clarkson et al. [30] have computed the conserved charges (QNoether) by treating the Nut

solutions as reference solutions in higher dimensional cases. They also have computed

these quantities (Mbolt,MNut) by using the “boundary counterterm” method and found a

relation between them:

QNoether = Mbolt − MNut (4.4)

Motivated by these works and to compare our method with other methods, in this section,

we will select the Nut solutions as reference solutions. Then we calculate the conserved

quantities for 4−, 6−, 8− and 10-dimensional cases by using our new formula (3.37). Our

results agree with those given in [30] in any dimension. Furthermore, let us note that

if chooses a massless solution, but with the same Nut charge, as the reference solution,

one can also get finite results, as shown below. In that case, our results are the same as

those resulting from the “boundary counterterm” method. For simplicity, we will mainly

consider the Euclidean sector for these metrics. The quantities in the Lorentzian sector

can be obtained by analytically continuing the coordinate τ and also the parameter n (i.e.,

one replaces n2 with −N2).

4.1 Four dimensional solutions

The four dimensional Nut charged AdS solution has the following form [27]

ds2 = F (r)(dτ + 2n cos θdφ)2 + F (r)−1dr2 + (r2 − n2)(dθ2 + sin2 θdφ2), (4.5)

where F (r) is given by

F (r) =
1

`2(r2 − n2)

[
`2(r2 + n2) − 2Mr`2 + (r4 − 6n2r2 − 3n4)

]
. (4.6)

In order for this solution to describe a Nut solution, the mass parameter has to be fixed

to be

Mn =
n(`2 − 4n2)

`2
, (4.7)

so that F (r = n) = 0 and the dimension of the fixed-point set of ∂τ is zero. Fixing the

mass parameter at this value, F (r) is then given by

Fn(r) =
r − n

r + n
(1 + `−2(r − n)(r + 3n)). (4.8)
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On the other hand, the Bolt solution is given by

F (r) = Fb(r) =
r2 − 2Mbr + n2 + `−2(r4 − 6n2r2 − 3n4)

r2 − n2
, (4.9)

where

Mb =
r2
b + n2

2rb
+

1

2`2

(
r3
b − 6n2rb − 3

n4

rb

)
, (4.10)

with

rb± =
`2

12n

(
1 ±

√
1 − 48

n2

`2
+ 144

n4

`4

)
. (4.11)

For rb to be real the discriminant must be no-negative. Furthermore, the condition must

be satisfied: rb > n, which gives

n ≤
(

1

6
−

√
3

12

)1/2

`. (4.12)

Treating the Nut solution as the reference solution, we give the conserved charges of the

Taub-Bolt-AdS solution, corresponding to the Killing vector ∂τ , as 2

H∂τ
[g1] =

`

8πG

∫

∂Σ
Ω−1

[
(C̃1)acbd(ñ1)

c(ñ1)
d − (C̃0)acbd(ñ0)

c(ñ0)
d
]
ũb(∂τ )a dS̃, (4.13)

where the subscripts “1” and“0” correspond to “Bolt” and “Nut” solution, respectively.

By straightforward calculations, it turns out that the leading order of the Weyl tensor for

the solution (4.5) is

C̃τ
rτr = Cτ

rτr ∼ 2M`2

r5
+ O

(
1

r6

)
. (4.14)

Choosing the conformal factor as `
r , one then has

(Ẽ1)
τ
τ − (Ẽ0)

τ
τ = Ω−1 [(C1)

τ
rτr(ñ1)

r(ñ1)
r − (C0)

τ
rτr(ñ0)

r(ñ0)
r]

∼ r5

`5

2`2(Mb − Mn)

r5

=
2(Mb − Mn)

`3
. (4.15)

Note that dS̃τ = `2 sin θdθ, we obtain the mass of the Taub-Bolt-AdS solution

∆M =
`

8πG

∫

∂Σ

2(Mb − Mn)

`3
`2 sin θdθdφ (4.16)

=
(Mb − Mn)

G
.

This is completely in agreement with the one in [29, 30]. If one writes the metric in the

form in [28], the same result as in [28] can also be obtained.

2Hereafter we use the orientation convention of Gibbons et al. [31] such that d eSt is positive.
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4.2 Six dimensional solutions

The six dimensional Nut charged AdS solution has the metric [27]

ds2 = F (r)(dτ + 2n cos θ1dφ1 + 2n cos θ2dφ2)
2 + F (r)−1dr2

+(r2 − n2)(dθ1
2 + sin2 θ1dφ1

2 + dθ2
2 + sin2 θ2dφ2

2), (4.17)

where F (r) is given by

F (r)=
1

3`2(r2 − n2)2
[
3r6+(`2 − 15n2)r4−3n2(2`2 − 15n2)r2 − 6Mr`2 − 3n4(`2 − 5n2)

]
.

(4.18)

When the mass parameter M is fixed to be

Mn =
4n3(6n2 − `2)

3`2
, (4.19)

this solution describes a Nut solution with F (r = n) = 0, so that the dimension of the

fixed-point set of ∂τ is zero. Fixing the mass at this value, F (r) is changed to

Fn(r) =
(r − n)(3r3 + 9nr2 + (`2 + 3n2)r + 3n(`2 − 5n2))

3(r + n)2`2
. (4.20)

A regular Bolt solution has the mass parameter

M = Mb =
−1

6`2
[3rb

5 + (`2 − 15n2)rb
3 − 3n2(2`2 − 15n2)rb − 3n4(`2 − 5n2)/rb], (4.21)

where rb is a function of n and `

rb± =
1

30n

(
`2 ±

√
`4 − 180n2`2 + 900n4

)
. (4.22)

To have a real value of rb the discriminant in the above equation must be non-negative.

The condition rb > n leads to

n ≤
(

3 − 2
√

2

30

) 1

2

`. (4.23)

Treating the Nut solution as the reference solution, we can give the conserved charges for

the Bolt solution

H∂τ
[g1] =

`

8πG · 3

∫

∂Σ
Ω−3

[
(C̃1)acbd(ñ1)

c(ñ1)
d − (C̃0)acbd(ñ0)

c(ñ0)
d
]
ũb(∂τ )a dS̃. (4.24)

By straightforward calculation, the first two terms of the Weyl tensor for the solution (4.17)

are

C̃τ
rτr = Cτ

rτr ∼ 4n2(`2 − 6n2)

r6
+

12`2M

r7
+ O

(
1

r8

)
. (4.25)

Note that the first term on the right hand side of the above equation (4.25) is independent

of the mass parameter M . Thus if we directly apply the formula given by Ashtekar et

al. [10] to this six dimensional Bolt solution, obviously we will get a divergent result due
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to (4.25). However, using our formula (3.37), we have

(Ẽ1)
τ
τ − (Ẽ0)

τ
τ =

1

3
Ω−3 [(C1)

τ
rτr(ñ1)

r(ñ1)
r − (C0)

τ
rτr(ñ0)

r(ñ0)
r]

∼ r7

`7

4`2(Mb − Mn)

r7

=
4(Mb − Mn)

`5
. (4.26)

Using
√

g = (r2 − n2)2 sin θ1 sin θ2, one has

dS̃τ = `4 sin θ1 sin θ2dθ1dθ2dφ1dφ2. (4.27)

Finally we obtain the mass of the six dimensional Bolt solution

∆M =
`

8πG

∫

∂Σ

4(Mb − Mn)

`5
`4 sin θ1 sin θ2dθ1dθ2dφ1dφ2

=
8π

G
(Mb − Mn). (4.28)

Again, it is identical to the one in [30].

4.3 Eight dimensional solutions

The eight dimensional Nut charged AdS solution has the following form [27]

ds2 = F (r)(dτ + 2n cos θ1dφ1 + 2n cos θ2dφ2 + 2n cos θ3dφ3)
2 + F (r)−1dr2 (4.29)

+(r2 − n2)(dθ1
2 + sin2 θ1dφ1

2+dθ2
2 + sin2 θ2dφ2

2+dθ3
2 + sin3 θ3dφ3

2),

where F (r) is given by

F (r) = (4.30)

=
5r8 + (`2 − 28n2)r6 + 5n2(14n2 − `2)r4 + 5(3`2 − 28n2)r2 − 10Mr`2 + 5n6(`2 − 7n2)

5`2(r2 − n2)3
.

In order to have a Nut solution, the mass parameter M must be fixed as

Mn =
8n5(`2 − 8n2)

5`2
. (4.31)

Once again by fixing the mass at the above value, the function F (r) is then

F (r) =
(r − n)(5r4 + 20nr3 + (`2 + 22n2)r2 + (4n`2 − 12n3)r − 35n4 + 5`2n2)

5(r + n)3`2
. (4.32)

In order to have a regular Bolt solution we must impose the mass M as

Mb =
1

10`2
[rb

7 + (`2 − 28n2)rb
5 + 5n2(14n2 − `2)rb

3 + 5(3`2 − 28n2)rb + 5n6(`2 − 7n2)/rb],

(4.33)

where rb is

rb± =
1

56n

(
`2 ±

√
`4 − 448n2`2 + 3136n4

)
. (4.34)
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Requiring that rb be real and also be greater than n implies that

n ≤
(

4 −
√

15

56

) 1

2

`. (4.35)

Treating the Nut solution as a reference solution, we can get the conserved charges for the

Bolt solution as

H∂τ
[g1] =

`

8πG · 5

∫

∂Σ
Ω−5

[
(C̃1)acbd(ñ1)

c(ñ1)
d − (C̃0)acbd(ñ0)

c(ñ0)
d
]
ũb(∂τ )a dS̃. (4.36)

Note that in this case one has the following component of the Weyl tensor for the solu-

tion (4.29)

C̃τ
rτr = Cτ

rτr ∼ 6/5n2(`2 − 8n2)

r6

−3/175(14`4n2 + `2(1875 − 1469n4) + 28n2(−625 + 477n4))

r8

+
30M`2

r9
+ O

(
1

r10

)
, (4.37)

and then

(Ẽ1)
τ
τ − (Ẽ0)

τ
τ =

1

5
Ω−5 [(C1)

τ
rτr(ñ1)

r(ñ1)
r − (C0)

τ
rτr(ñ0)

r(ñ0)
r]

∼ r9

`9

6`2(Mb − Mn)

r9

=
6(Mb − Mn)

`7
. (4.38)

With
√

g = (r2 − n2)3 sin θ1 sin θ2 sin θ3, and

dS̃τ = `6 sin θ1 sin θ2 sin θ3dθ1dθ2dθ3dφ1dφ2dφ3, (4.39)

we obtain the energy of the eight dimensional Bolt solution

∆M =
`

8πG

∫

∂Σ

6(Mb − Mn)

`7
`6 sin θ1 sin θ2 sin θ3dθ1dθ2dθ3dφ1dφ2dφ3

=
48π2

G
(Mb − Mn). (4.40)

4.4 Ten dimensional solutions

Ten dimensional Nut charged AdS solution is given by [27]

ds2 = F (r)(dτ + 2n cos θ1dφ1 + 2n cos θ2dφ2 + 2n cos θ3dφ3 + 2n cos θ4dφ4)
2

+ F (r)−1dr2 + (r2 − n2)(dθ1
2 + sin2 θ1dφ1

2 + dθ2
2 + sin2 θ2dφ2

2

+ dθ3
2 + sin2 θ3dφ3

2 + dθ4
2 + sin2 θ4dφ4

2), (4.41)
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where F (r) has the form

F (r) =
1

35`2(r2 − n2)4
[35r10 + 5(`2 − 45n2)r8 + 14n2(45n2 − 2`2)r6

+ 70n4(`2 − 15n2)r4 + 35n6(45n2 − 4`2)r2 − 70Mr`2 + 35n8(9n2 − `2)]. (4.42)

In order to describe a Nut solution, the mass parameter M must be fixed as

Mn =
64n7(10n2 − `2)

35`2
. (4.43)

Taking the mass parameter to be the above value, one has F (r) as

F (r) =
1

35(r + n)4`2
(r − n)(35r5 + 175nr4 + (300n2 + 5`2)r3

+ (25n`2 + 100n3)r2 + (47n2`2 − 295n4)r − 315n5 + 35`2n3). (4.44)

In order to have a regular Bolt solution we must impose the mass M as

Mb =
1

70`2
[35rb

9 + (5`2 − 225n2)rb
7 + n2(630n2 − 28`2)rb

5 + n4(70`2 − 1050n2)rb
3

+ n6(1575n2 − 140`2)rb + n8(315n2 − 35`2)], (4.45)

where

rb± =
1

90n

(
`2 ±

√
`4 − 9002`2 + 8100n4

)
. (4.46)

Requiring that rb is real and larger than n implies

n ≤
(

5 − 2
√

6

90

) 1

2

`. (4.47)

In this case we have the conserved charge of the Bolt solution by considering the Nut

solution as a reference solution

H∂τ
[g1] =

`

8πG · 7

∫

∂Σ
Ω−7

[
(C̃1)acbd(ñ1)

c(ñ1)
d − (C̃0)acbd(ñ0)

c(ñ0)
d
]
ũb(∂τ )a dS̃. (4.48)

Note that here we have

C̃τ
rτr = Cτ

rτr ∼ 24n2
(
`2 − 10n2

)

35r6

+
8
(
−3`4n2 + 11`2n4 + 190n6

)

245r8

+
8
(
15`6n2 − 142`4n4 + 22350`2n6 − 224300n8

)

8575r10

+
56`2M

r11
+ O

(
1

r12

)
, (4.49)
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and

(Ẽ1)
τ
τ − (Ẽ0)

τ
τ =

1

7
Ω−7 [(C1)

τ
rτr(ñ1)

r(ñ1)
r − (C0)

τ
rτr(ñ0)

r(ñ0)
r]

∼ r9

`9

8`2(Mb − Mn)

r9

=
8(Mb − Mn)

`7
. (4.50)

In ten dimensional case, one has
√

g = (r2 − n2)4 sin θ1 sin θ2 sin θ3 sin θ4, and

dS̃τ = `8 sin θ1 sin θ2 sin θ3 sin θ4dθ1dθ2dθ3dθ4dφ1dφ2dφ3dφ4. (4.51)

Thus, we obtain the mass of the ten dimensional Bolt solution

∆M =
`

8πG

∫

∂Σ

8(Mb − Mn)

`9
`8 sin θ1 sin θ2 sin θ3dθ1dθ2dθ3dφ1dφ2dφ3

=
256π3

G
(Mb − Mn). (4.52)

At the end of this section, we give the mass formula for a general Nut charged AdS

solution in 2k + 2 dimension, which has the form (4.1). The Nut solution is obtained by

fixing the mass parameter as [30]

Mn =
n2k−1

√
π`2

[
`2 − (2k + 2)n2

] Γ
(

3−2k
2

)
Γ (k + 1)

(2k − 1)
, (4.53)

while the Bolt solution corresponds to the case with the mass parameter

Mb =
1

2

[
k∑

i=0

(
k

i

)
(−1)in2ir2k−2i−1

b

(2k − 2i − 1)
+

(2k + 1)

`2

k+1∑

i=0

(
k + 1

i

)
(−1)in2ir2k−2i+1

b

(2k − 2i + 1)

]
, (4.54)

where rb > n is determined by F (rb) = 0 and F ′(rb) = 2
n(2k+2) . For these general Taub-

Bolt-AdS and Taub-Nut-AdS solutions we find

Ẽτ
1,τ − Ẽτ

0,τ =
(n − 2)(Mb − Mn)

`n+1
, ∆M =

(n − 2)(4π)(n−2)/2(Mb − Mn)

8πG
. (4.55)

This result coincides with that in [30], where those authors get the result by using “bound-

ary counterterm” method and “Noether method”.

5. Four dimensional kerr-taub-nut-AdS solution

In this section we discuss the case of four dimensional Euclidean Kerr-Taub-Nut-AdS space-

times, which has the form [32]

ds2 =
V (r) (dτ − (2N cos θ − a sin2 θ)dφ)2) + H(θ) sin2 θ (a dτ − (r2 − N2 − a2) dφ)2

χ4 (r2 − (N + a cos θ)2)

+(r2 − (N + a cos θ)2)

(
dr2

V (r)
+

dθ2

H(θ)

)
, (5.1)
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where

H(θ) = 1 +
q N2

`2
+

(2N + a cos θ)2

`2
,

V (r) =
r4

`2
+

((q − 2)N2 − a2 + `2) r2

`2
− 2M r − (a + N) (a − N) (q N2 + `2 + N2)

`2
.(5.2)

The periodicity in τ and the parameters q and χ are chosen so that conical singular-

ities are avoided. In the (θ, φ) section these considerations imply that q = −4 and

χ = 1/
√

1 + a2/l2.

For this solution, a straightforward calculation gives

C̃τ
rτr = Cτ

rτr ∼ 2M`2

r5
+ O(

1

r6
),

C̃τ
rφr = Cτ

rφr ∼ 3M`2(a sin2 θ − 2N cos θ)

r5
+ O

(
1

r6

)
. (5.3)

The conformal boundary volume has the form

dS̃τ =
`2

χ4
sin θdθdφ. (5.4)

In this case we choose the massless solution, namely the case with M = 0, as a reference

solution. Thus we find

(Ẽ1)
τ
τ − (Ẽ0)

τ
τ = Ω−1 [(C1)

τ
rτr(ñ1)

r(ñ1)
r − (C0)

τ
rτr(ñ0)

r(ñ0)
r] (5.5)

∼ r5

`5

2`2M

r5
=

2M

`3
,

and the conserved charge associated to ∂τ

H∂τ
=

`

8πG

∫

∂Σ

2M

`3

`2

χ4
sin θdθdφ =

1

G

M

χ4
. (5.6)

Similarly we have

(Ẽ1)
τ
φ − (Ẽ0)

τ
φ = Ω−1 [(C1)

τ
rφr(ñ1)

r(ñ1)
r − (C0)

τ
rφr(ñ0)

r(ñ0)
r]

∼ r5

`5

3M(a sin2 θ − 2N cos2 θ)`2

r5
=

3M(a sin2 θ − 2N cos2 θ)

`3
, (5.7)

H∂φ
=

`

8πG

∫

∂Σ

3M(a sin2 θ − 2N cos2 θ)

`3

`2

χ4
sin θdθdφ =

1

G

Ma

χ4
. (5.8)

These results are just what Mann obtained in [32], but he used the “boundary counterterm”

method.

It should be noted here, that the energy E and angular momentum Jφ are defined

as E = H∂t
and Jφ = −H∂φ

in the Lorentz sector. The relative sign difference between

definitions of energy and angular momentum can be traced back to its origin for the Lorentz

signature of the space-time metric as mentioned in [19]. This can be understood by noting

the definitions of energy and angular momentum of a particle in special relativity: E =
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−pat
a and J = +paφ

a. In the Euclidean sector, the relative sign difference disappears, and

the Hamilton associated to ∂φ is just the angular momentum. In the next section, we will

calculate the energy and angular momentum of higher dimensional Kerr-AdS solutions with

Nut charges, and the relative sign difference will appear because we consider the solutions

in the Lorentz sector.

6. Higher dimensional kerr-AdS solutions with nut charges

The higher dimensional Kerr-AdS solution with Nut charges has been given recently in [33]

ds2 =
p2 + q2

X
dp2 +

p2 + q2

Y
dq2 +

X

p2 + q2
(dτ + q2dσ)2 − Y

p2 + q2
(dτ − p2dσ)2 +

p2q2

γ
dΩ2

k,

(6.1)

where

X = γ − εp2 +
1

`2
p4 + 2Np1−k , Y = γ + εq2 +

1

`2
q4 − 2m q1−k, (6.2)

and dΩ2
k is the metric on the unit sphere Sk, (γ,m,N) are three independent continuous

parameters, which are related to the angular momentum, mass and Nut charge, respec-

tively, ε is a dimensionless constant, and ` is the AdS radius. If we take the parameters

in (6.2) to be

γ = a2 , ε = 1 +
1

`2
a2 , m = M, (6.3)

define

∆r = (r2 + a2)

(
1 +

r2

`2

)
− 2Mr1−k,

∆θ = 1 − a2

`2
cos2 θ,

Ξ = 1 − a2

`2
,

ρ2 = r2 + a2 cos2 θ, (6.4)

and choose a set of new coordinates as

p = a cos θ , q = r , τ = t − a

Ξ
φ , σ = − 1

aΞ
φ , (6.5)

then we can rewrite the solution (6.1) in the form

ds2 = −∆r

ρ2

(
dt − a

Ξ
sin2 θdφ

)2
+

ρ2

∆r
dr2 +

ρ2

∆θ + 2N(a cos θ)1−k

a2 sin2 θ

dθ2

+
∆θ sin2 θ + 2N(a cos θ)1−k

a2

ρ2

(
adt − a2 + r2

Ξ
dφ

)2

+ r2 cos2 θdΩ2
k. (6.6)

When N = 0, this metric reduces to the metric obtained in [34], which describes a higher

dimensional Kerr-AdS black hole with a single rotation parameter. Note that in the four

dimensional case, this solution (6.6) seems not completely the same as that given in (5.1).
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Taking the massless Kerr-Taub-Nut-AdS as the reference solution, namely the solution

with M = 0, we can calculate the conserved quantities associated to killing vector fields

∂t and ∂φ of the solution (6.1) in the coordinates (t, r, θ, φ, · · ·), according to the following

formulas

H∂t
[g1] =

`

8πG(n − 3)

∫

∂Σ
lim
→B

Ω3−n
[
(C̃1)acbd(ñ1)

c(ñ1)
d − (C̃0)acbd(ñ0)

c(ñ0)
d
]
ũb(∂t)

a dS̃,

(6.7)

and

H∂φ
[g1] =

`

8πG(n − 3)

∫

∂Σ
lim
→B

Ω3−n
[
(C̃1)acbd(ñ1)

c(ñ1)
d − (C̃0)acbd(ñ0)

c(ñ0)
d
]
ũb(∂φ)a dS̃,

(6.8)

where the conformal factor is taken to be `
r .

6.1 Four dimensional solutions

In four dimensional case, we find

C̃t
rtr =

2M`2

r5
+ O

(
1

r6

)
,

C̃t
rφr =

−3Ma sin2 θ`2

Ξr5
+ O

(
1

r6

)
. (6.9)

The conformal boundary volume has the form

dS̃t =
`2

Ξ
sin θdθdφ, (6.10)

and

(Ẽ1)
t
t − (Ẽ0)

t
t = Ω−1

[
(C1)

t
rtr(ñ1)

r(ñ1)
r − (C0)

t
rtr(ñ0)

r(ñ0)
r
]
,

∼ r5

`5

2`2M

r5
=

2M

`3
. (6.11)

Thus the conserved charge associated to ∂t is

H∂t
=

`

8πG

∫

∂Σ

2M

`3

`2

Ξ
sin θdθdφ =

1

G

M

Ξ
. (6.12)

Similarly we have

(Ẽ1)
t
φ − (Ẽ0)

t
φ = Ω−1

[
(C1)

t
rφr(ñ1)

r(ñ1)
r − (C0)

t
rφr(ñ0)

r(ñ0)
r
]

∼ −r5

`5

−3Ma sin2 θ`2

Ξr5
= −3Ma sin2 θ

Ξ`3
, (6.13)

and

H∂φ
=

`

8πG

∫

∂Σ

3m sin2 θ

Ξ`3

`2

Ξ
sin θdθdφ = − 1

G

Ma

Ξ2
. (6.14)

Thus the associated angular momentum is

Jφ = −H∂φ
=

1

G

Ma

Ξ2
. (6.15)
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According to the definition [31], the “conformal mass” of the solution is

Mc = H∂t
+

a

`2
Jφ =

1

G

M

Ξ2
, (6.16)

which satisfies the first law of thermodynamics. We note that the mass and angular mo-

mentum of the Kerr-Taub-Nut-AdS solution have completely the same form as those of the

Kerr-AdS solution.

6.2 Six dimensional solutions

For six dimensional solution, we have

C̃t
rtr =

6N`2

r6a cos θ
+

12M`2

r7
+ O

(
1

r8

)
,

C̃t
rφr = −7N`2 sin2 θ

Ξr6 cos θ
− 15Ma sin2 θ

Ξr7
+ O

(
1

r8

)
. (6.17)

The conformal boundary volume takes the form

dS̃t =
`4

Ξ
cos2 θ sin θdθdφdΩ2, (6.18)

and

(Ẽ1)
t
t − (Ẽ0)

t
t =

1

3
Ω−3

[
(C1)

t
rtr(ñ1)

r(ñ1)
r − (C0)

t
rtr(ñ0)

r(ñ0)
r
]

∼ r7

`7

4`2M

r7
=

4M

`5
. (6.19)

Thus we obtain the conserved charge associated to ∂t

H∂t
=

`

8πG

∫

∂Σ

4M

`5

`4

Ξ
cos2 θ sin θdθdφdΩ2 =

1

G

8πM

3Ξ
. (6.20)

Similarly we find

(Ẽ1)
t
φ − (Ẽ0)

t
φ =

1

3
Ω−3

[
(C1)

t
rφr(ñ1)

r(ñ1)
r − (C0)

t
rφr(ñ0)

r(ñ0)
r
]

∼ −r7

`7

5Ma sin2 θ`2

Ξ r7
= −5Ma sin2 θ

Ξ`5
, (6.21)

H∂φ
=

`

8πG

∫

∂Σ

5Ma sin2 θ

Ξ`5

`4

Ξ
cos2 θ sin θdθdφdΩ2 = − 1

G

4πMa

3Ξ2
. (6.22)

The associated angular momentum is then given by

Jφ = −H∂φ
=

1

G

4πMa

3Ξ2
. (6.23)

and the “conformal mass” of the solution is

Mc = H∂t
+

a

`2
Jφ =

4πM

3GΞ

(
1 +

1

Ξ

)
. (6.24)
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6.3 Eight dimensional solutions

In this case we have

C̃t
rtr =

6N`2

r6a3 cos3 θ
− N`2(a2 + 6`2 + 19a2 cos2 θ)

r8a3 cos3 θ
+

30M`2

r9
+ O

(
1

r10

)
,

C̃t
rφr = − 5N`2 sin2 θ

r6a2 cos3 θΞ
+

N`2(5`2 + 22a2 cos2 θ)

r8a2 cos3 θΞ
− 35Ma`2 sin2 θ

r9Ξ
+ O

(
1

r10

)
, (6.25)

and

(Ẽ1)
t
t − (Ẽ0)

t
t =

1

5
Ω−5

[
(C1)

t
rtr(ñ1)

r(ñ1)
r − (C0)

t
rtr(ñ0)

r(ñ0)
r
]

(6.26)

∼ r9

`9

6`2M

r9
=

6M

`7
.

Note that the conformal boundary volume has the form

dS̃t =
`6

Ξ
cos4 θ sin θdθdφdΩ4. (6.27)

We obtain the conserved charge associated to ∂t

H∂t
=

`

8πG

∫

∂Σ

6M

`7

`6

Ξ
cos4 θ sin θdθdφdΩ4 =

1

G

8π2M

5Ξ
. (6.28)

Similarly we find

(Ẽ1)
t
φ − (Ẽ0)

t
φ =

1

5
Ω−5

[
(C1)

t
rφr(ñ1)

r(ñ1)
r − (C0)

t
rφr(ñ0)

r(ñ0)
r
]

(6.29)

∼ −r9

`9

7Ma sin2 θ`2

Ξ r9
= −7Ma sin2 θ

Ξ`7
,

H∂φ
=

`

8πG

∫

∂Σ

7Ma sin2 θ

Ξ`7

`6

Ξ
cos4 θ sin3 θdθdφdΩ4 = − 1

G

8π2Ma

15Ξ2
. (6.30)

Thus the angular momentum is

Jφ = −H∂φ
=

1

G

8π2Ma

15Ξ2
, (6.31)

and the “conformal mass” of the solution

Mc = H∂t
+

a

`2
Jφ =

8π2M

15GΞ
(2 +

1

Ξ
). (6.32)

6.4 Ten dimensional solutions

This case gives

C̃t
rtr =

6N`2

r6a5cos5 θ
− N`2

(
6`2 + 3a2 + 17a2 cos2 θ

)

r8a5 cos5 θ
,

+
N`2

(
3
(
a4 + a2`2 + 2`4

)
− a2

(
a2 − 17`2

)
cos2 θ + 40a4 cos4 θ

)

r10a5cos5 θ

+
56M`2

r11
+ O

(
1

r12

)

C̃t
rφr = − 3N`2 sin2 θ

r6a4 cos5 θΞ
+

3N`2(`2 + 6a2 cos2 θ) sin2 θ

r8a4 cos5 θΞ

− 3N`2(`4 + 6a2`2 cos2 θ + 15a2 cos4 θ) sin2 θ

r10a4 cos5 θΞ
− 63Ma`2 sin2 θ

r11Ξ
+ O

(
1

r12

)
. (6.33)
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The conformal boundary volume has the form

dS̃t =
`8

Ξ
cos6 θ sin θdθdφdΩ6, (6.34)

Note that

(Ẽ1)
t
t − (Ẽ0)

t
t =

1

7
Ω−7

[
(C1)

t
rtr(ñ1)

r(ñ1)
r − (C0)

t
rtr(ñ0)

r(ñ0)
r
]

∼ r11

`11

8`2M

r11
=

8M

`9
. (6.35)

We find the conserved charge associated to the Killing vector ∂t

H∂t
=

`

8πG

∫

∂Σ

8M

`9

`8

Ξ
cos6 θ sin θdθdφdΩ6 =

1

G

64π3M

105Ξ
. (6.36)

Similarly one can get

(Ẽ1)
t
φ − (Ẽ0)

t
φ =

1

7
Ω−7

[
(C1)

t
rφr(ñ1)

r(ñ1)
r − (C0)

t
rφr(ñ0)

r(ñ0)
r
]

∼ −r11

`11

9Ma sin2 θ`2

Ξ r11
= −9Ma sin2 θ

Ξ`9
, (6.37)

H∂φ
=

`

8πG

∫

∂Σ

9Ma sin2 θ

Ξ`9

`8

Ξ
cos6 θ sin3 θdθdφdΩ6 = − 1

G

16π3Ma

105Ξ2
. (6.38)

Thus the solution has the angular momentum

Jφ = −H∂φ
=

1

G

16π3Ma

105Ξ2
, (6.39)

and the “conformal mass”

Mc = H∂t
+

a

`2
Jφ =

16π3M

105GΞ

(
3 +

1

Ξ

)
. (6.40)

7. (Un)wrapped brane

The black brane solutions with flat transverse space in n-dimensions are also AlAdS space-

times. Their metrics can be written as [35, 36]

ds2 = −∆(r)2dt2 +
dr2

∆(r)2
+ r2(dx1

2 + · · · + dxn−2
2) (7.1)

where ∆(r)2 = −2M/rn−3 + r2/`2. In this metric, at least one of the transverse direc-

tion xi should be compactified so that parameter M cannot be changed by rescaling the

coordinates. Thus, the non-vanishing conserved charge is the mass only. Choosing the

background reference solution as M = 0, we have

Ẽt
t ∼

(n − 2)M

`n−1
. (7.2)
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The boundary conformal volume element has the form

dS̃t = `n−2dv, (7.3)

where dv denotes the volume element of n − 2-transverse space. We thus obtain

H∂t
=

`

8πG

∫
(n − 2)M

`n−1
`n−2dv =

(n − 2)M

8πG
V, (7.4)

where V represents the volume of n − 2-transverse space. This result is the same as that

of [14, 15]. Note that this solution gives an example which has a Ricci flat boundary, so that

the Fefferman-Graham expansion without log-terms can be done in any dimension [26], and

the conserved charges can be defined as in (3.37).

8. Conclusion and discussion

In this paper, based on the work of Hollands et al. [12], we derive a formula of calculating

conserved charges in even dimensional asymptotically locally Anti-de Sitter (AlAdS) space-

times by using the covariant phase space definition of Wald and Zoupas [19]. Our formula

generalizes the formula proposed by Ashtekar et al. [5, 10]. This formula is background

dependent. We therefore have to specify a reference solution when we calculate conserved

charges for a certain AlAdS space-time. Using this formula we calculate the masses of

Taub-Bolt-AdS space-times by treating Taub-Nut-AdS space-times as reference solutions.

The resulting masses agree with those obtained previously by “background subtraction”

method and “boundary counterterm” method. We also discussed the conserved charges

in four dimensional Kerr-Taub-Nut-AdS solutions and higher dimensional Kerr-AdS solu-

tions with Nut charges by treating the corresponding massless solutions as the background

reference solutions. For these higher dimensional Kerr-AdS solutions with Nut charges,

these conserved charges are obtained at the first time. In addition, as a further example

of AlAdS space-times, the mass of the (un)wrapped brane solutions in any dimensions is

also studied.

It is interesting to discuss the odd dimensional case. However, some log terms will

appear in the Fefferman-Graham expansion in this case. Therefore it will fail by naively

applying the same procedure as is exhibited in this paper to the odd dimensional case.

Nevertheless, we have found that the similar conserved charges can be defined for any

dimension if the static AlAdS space-times have Ricci flat boundaries.

Topological AdS black holes also belong to a kind of AlAdS space-times, and they may

have nontrivial horizons and boundary topologies (see for example [37 – 40, 35]). This study

is motivated by the discovery of Bañados-Teitelboim-Zanelli (BTZ) black holes [41], which

are exact solutions in the three-dimensional Einstein gravity with a negative cosmological

constant, and are locally equivalent to a three-dimensional anti-de Sitter space. The method

of Ashtekar et al. can not be used directly to compute the conserved charges of these black

hole space-times. So, it is interesting to discuss the conserved charges of these solutions by

using our new formula.
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The examples discussed in this paper suggest that in even dimensional AlAdS space-

times, a relation of “surface counterterm method” to our method

Hξ[g] = Qξ[g] − Qξ[g0], (8.1)

where Qξ[g] is the conserved charge obtained by using the “surface conterterm” method

for a solution g and Qξ[g0] is the one corresponding to the selected reference solution g0.

If g is an AAdS space-time, this relation reduces to

Hξ[g] = Qξ[g] − Qξ[AdS]. (8.2)

This case has been discussed by Hollands, Ishibashi and Marolf in the paper [42]. They have

used general arguments based on the Peierls bracket to compare the counterterm charges

and the Hamiltonian charges defined in [12] in any dimensional AAdS space-time. In the

even dimensional AAdS case, the counterterm charge of exact AdS space-times vanishes,

while in odd dimensional case the counterterm charge Qξ[AdS] corresponds to the Casimir

energy of the boundary CFTs. So, it is interesting to find to what the counterterm charges

Qξ[g0] correspond in the boundary CFTs as one considers the general AlAdS cases.

Acknowledgments

L.M. Cao thanks Hong-Sheng Zhang, Hao Wei, Hui Li, Da-Wei Pang and Yi Zhang for

useful discussions and kind help. This work is supported by grants from NSFC, China (No.

10325525 and No. 90403029), and a grant from the Chinese Academy of Sciences.

References

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200].

[2] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical

string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109].

[3] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150]; Anti-de Sitter space, thermal phase transition and confinement in gauge

theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131].

[4] M. Henneaux and C. Teitelboim, Asymptotically anti-de Sitter spaces, Commun. Math. Phys.

98 (1985) 391.

[5] A. Ashtekar and A.Magnon, Class. and Quant. Grav. 1 (1984) L39.

[6] L.F. Abbott and S. Deser, Stability of gravity with a cosmological constant, Nucl. Phys. B

195 (1982) 76.

[7] S.W. Hawking and G.T. Horowitz, The gravitational hamiltonian, action, entropy and

surface terms, Class. and Quant. Grav. 13 (1996) 1487 [gr-qc/9501014].

[8] J.D. Brown and J. York, James W., Quasilocal energy and conserved charges derived from the

gravitational action, Phys. Rev. D 47 (1993) 1407.

– 27 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://xxx.lanl.gov/abs/hep-th/9711200
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB428%2C105
http://xxx.lanl.gov/abs/hep-th/9802109
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C253
http://xxx.lanl.gov/abs/hep-th/9802150
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C505
http://xxx.lanl.gov/abs/hep-th/9803131
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C98%2C391
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C98%2C391
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C1%2CL39
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB195%2C76
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB195%2C76
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C13%2C1487
http://xxx.lanl.gov/abs/gr-qc/9501014
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD47%2C1407


J
H
E
P
0
3
(
2
0
0
6
)
0
8
3

[9] V. Balasubramanian and P. Kraus, A stress tensor for anti-de Sitter gravity, Commun. Math.

Phys. 208 (1999) 413 [hep-th/9902121].

[10] A. Ashtekar and S. Das, Asymptotically anti-de Sitter space-times: conserved quantities,

Class. and Quant. Grav. 17 (2000) L17 [hep-th/9911230].

[11] R. Olea, Mass, angular momentum and thermodynamics in four- dimensional kerr-AdS black

holes, JHEP 06 (2005) 023 [hep-th/0504233].

[12] S. Hollands, A. Ishibashi and D. Marolf, Comparison between various notions of conserved

charges in asymptotically AdS-spacetimes, Class. and Quant. Grav. 22 (2005) 2881

[hep-th/0503045].

[13] I. Papadimitriou and K. Skenderis, Thermodynamics of asymptotically locally AdS

spacetimes, JHEP 08 (2005) 004 [hep-th/0505190].

[14] R. Aros, M. Contreras, R. Olea, R. Troncoso and J. Zanelli, Conserved charges for gravity

with locally AdS asymptotics, Phys. Rev. Lett. 84 (2000) 1647 [gr-qc/9909015].

[15] R. Aros, M. Contreras, R. Olea, R. Troncoso and J. Zanelli, Conserved charges for even

dimensional asymptotically AdS gravity theories, Phys. Rev. D 62 (2000) 044002

[hep-th/9912045].

[16] N. Deruelle and J. Katz, Comments on conformal masses, asymptotic backgrounds and

conservation laws, Class. and Quant. Grav. 23 (2006) 753 [gr-qc/0512077].

[17] R.M. Wald and A. Zoupas, Phys. Rev. D 61 (2000) 084027 [gr-qc/9911095].

[18] J. Lee and R. M. Wald, J. Math. Phys. 31 (3) 725 March 1990.

[19] V. Iyer and R.M. Wald, Some properties of noether charge and a proposal for dynamical black

hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028].

[20] V. Iyer and R.M. Wald, A comparison of noether charge and euclidean methods for computing

the entropy of stationary black holes, Phys. Rev. D 52 (1995) 4430 [gr-qc/9503052].

[21] C. R. Graham, math.DG/9909042.

[22] M.T. Anderson, Geometric aspects of the AdS/CFT correspondence, hep-th/0403087.

[23] S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of spacetime and

renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595

[hep-th/0002230].

[24] M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023

[hep-th/9806087]; Holography and the Weyl anomaly, Fortschr. Phys. 48 (2000) 125

[hep-th/9812032];

S. Nojiri and S.D. Odintsov, Conformal anomaly for dilaton coupled theories from AdS/CFT

correspondence, Phys. Lett. B 444 (1998) 92 [hep-th/9810008].

[25] C. Fefferman and C. Robin Graham, Conformal invariants, in Elie Cartan et les
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